
 
Assignment-2 

 
MINI DB-ENGINE (Phase I) 

Building the Base Classes 

 
 

 

Our goal in Phase I of this project is to first build two simple classes for handling sequential and random access 

files. Once these base classes are developed, we will construct Three additional classes which will serve as the 

bases for constructing a database table. These classes are: Meta_File, Data_File, Index_File.  Review the following 

technical report http://www.cs.iusb.edu/technical_reports/TR-20071222-2.pdf section 3.1 Access Mechanism. 

 

 

MINI-DB Engine

Random

IO

Index

File

.IDX

Meta

File

.MTA

Data

File

.DTA

Sequential

IO

Table

B-Tree
Hash

Index

Mini-DB

Engine

GUI
Rel

Algebra
Schema Tables...

Cluster

Index

 
 

  



 

Functional Specification for MiniDB BASE classes: 
 

Sequential IO 

 
class Seq_IO 
{ 
 char    FileName[256]; 
 fstream Seqfp;                      
 int     State;    // File state (OPEN for READ  WRITE, APPEND, or CLOSED)    
 int     Verbose;  // Verbose flag (ON /OFF) 
  public: 
 Seq_IO(char *filename);                          
 ~Seq_IO();                                    
 void EraseFile(void);                            
 int  OpenForWrite(void);                       
 int  OpenForAppend(void);                        
 int  OpenForRead(void);                          
 int  CloseFile();                                
 int  WriteData(char *a_record);                 
 int  ReadData(char *a_record, char rec_sep);    
 int  ReadData(char *a_record, unsigned long record_location,char rec_sep);                    
 unsigned long GetCurrentFileLocation(void); 
 unsigned long SetCurrentFileLocation(unsigned long location);           
 unsigned long FileSize(void);                   
}; 
 

Random IO 
 
class Random_IO { 
 fstream RandomFile;             
 int     Status;                // OPEN or CLOSED 
 int     Verbose;               // Verbose flag (ON /OFF) 
 public: 
 Random_IO(void);  
 ~Random_IO(void);  
 
 void Initialize(long start_address, long size, char filler_char); 
 
 int  OpenRandom(char *file_name); 
 void CloseRandom(void); 
 
 void ReadRandom(long start_address, unsigned size, char *in_buffer); 
 void WriteRandom(long start_address, unsigned size, char *out_buffer); 
 void AppendRandom(unsigned size, char *out_buffer); 
 
 unsigned long FileSize(); 
 void DisplayRandom(long start_address, unsigned size); 
}; 

  



Data File (.DTA) 

 

The data file is a sequentially organized, randomly access file. In other words, the record lengths are variable not 

fixed (just like a sequential file) and fields and records are separated using the "^" and "~" characters respectively.  

However, the data in the file should be accessed using a direct (random) access method.   This file will be used to 

maintain the actual data.  

 
class Data_File 
{ 
 char          FileName[256];              // *.dta 
 char          RecordSeparator;            // defaulted to '~' 
 char          FieldSeparator;             // defaulted to '^' 
 unsigned long CurrentFileLocation; 
 unsigned long EOFLocation; 
 int           Verbose;                    // Verbose flag (ON / OFF) 
 
  public: 
 Data_File(char *filename, 
   char field_separator,  
   char record_separator);  //Constructor 
 ~Data_File();    // Destructor 
 void SetRecordSeparator(char separator); // Default separator = '~' 
 void SetFieldSeparator(char separator); // Default separator = '^' 
 
 void Initialize(void); 
 unsigned long GetCurrentFileLocation(); 
 unsigned long FileSize(); 
 
 int  WriteRecord(char *a_record);  // Write/Append a record 
 int  ReadRecord(char *a_record, unsigned long record_location); 
 int  ReadNextRecord(char *a_record); // Read next record or 0 if error 
 
 int  UnPackRecord(char *a_record, int &number_of_fields, char *fields[]); 
 int  PackRecord(char *a_record, char *fields[]);     
 void DumpDataFile(void); 
 
}; 

  



Index File (.IDX) 

 

The index file is direct-access (random) file.  Records in this file are fixed size and would have the following 

format: 

 
struct idx_record { 
 unsigned long Key;  // Key to search for 
 unsigned long Address; // Physical location of the record in the .DTA file 
 char          Flag;  // A = ACTIVE, D=DELETED) 
}; 
 

//-----------------------------------------------------------------------// 
class Index_File 
{ 
 char       FileName[256];   // *.idx 
 Random_IO  RandomFile; 
 int        CurrentMaxRecords;  // Max number of index records in the file 
 int        Verbose;    // ON / OFF 
 
  public: 
 Index_File(char *filename);   // Constructor 
 ~Index_File();    // Destructor, also closes the file 
  
 void Initialize(int max_records);  // set the max records and open the file 
 void Expand(int highest_record);  // Expand the size of the Index_File 
 
 void InsertIndexRecord(idx_record *idx); // Insert an Index record 
 int  SearchIndexRecord(unsigned long Key, // return idx record, -1 if not found 
       idx_record *idx); 
 
 int  MaximumIndexRecords();   // Return max number of index records 
 void DumpIndexFile(void); 
}; 

  



Meta File (.MTA) 

 

This is a sequential file which will maintain information about our database / table/ data file. Each record in this file 

has the following structure: 

 
 
Tag Name= 

 
field separator (^) 

 
filed information 

 
field terminator(~) 

 

TABLE_NM=^Table Name~ 

NUM_FILDS=^Number_of_Fields_In_Table~ 

FN=^Field Name~ 

FS=^Field Size~ 

FT=^Field Type~ // for now don=t worry about fields other 

than character strings. 

FN=^Field Name~ 

FS=^Field Size~ 

FT=^Field Type~ 

 

To designate a filed as a primary key of the table, you should add a new APK@ tag and include that at the end of the 

table definition. 

 

PK=^Dept_ID~ 

FS=^4~ 

FT=^Char~ 

 

 

Note that we can add a new tag such as ADATABASE_NM=@ at the beginning of the meta-file and then proceed to 

maintain information about multiple tables in the same meta-file. 

 

Hacker====s Corner: 
Similar to Primary keys, if a field is to be designated as the foreign key (FK) to another table, then you should add a 

new FK tag and include it at the end of the table definition. Note that the FK, must have a link to a foreign table, 

therefore, it must include extra tags for ( FTN=^Foreign Table Name~ and FFN=^Foreign Field Name~ ) as well. 

 

Here is an example of a department table with 3 fields (Dept_ID, Dept_Name, Dept_Mgr).  The Dept_Mgr is a 

foreign key to the employee table. 

TABLE_NM=^Department~ 

NUM_FILDS=^3~ 

 

FN=^Dept_ID~ 

FS=^4~ 

FT=^Char~ 

 

FN=^Dept_Name~ 

FS=^25~ 

FT=^Char~ 

 

FN=^Dept_Mgr~   

FS=^25~ 

FT=^Char~ 

 

PK=^Dept_ID~ 



FS=^4~ 

FT=^Char~ 

 

FK=^Dept_Mgr~   // keep it simple, the FK and PK should have the 

same field name 

FFN=^EmpolyeeID~ 

FS=^25~ 

FT=^Char~ 

FTN=^Employee~ 

 

The overall goal is to design a simple, general purpose access mechanism for a small Relational-Algebra based 

database.  The above is the first phase of the implementation.  The relational algebra part comes later!! 

 
class Meta_File 
{ 
 char          FileName[256];  // *.dta 
 char          RecordSeparator; // defaulted to '~' 
 char          FieldSeparator;  // defaulted to '^' 
 char          TagSeparator; 
 unsigned long CurrentFileLocation; 
 unsigned long EOFLocation; 
 int           Verbose;    // Verbose flag (ON / OFF) 
 
 
 
 
  public: 
 Meta_File(char *filename,   //Constructor 
  char field_separator, 
  char record_separator, 
  char tag_separator); 
 ~Meta_File();     // Destructor 
  
 void SetRecordSeparator(char separator); // Default separator = '~' 
 void SetFieldSeparator(char separator); // Default separator = '^' 
 void SetTagSeparator(char separator);  // Default separator = '=' 
 
 void Initialize(void); 
 
 unsigned long SetCurrentFileLocation(unsigned long ); 
 unsigned long FileSize(); 
 
 int  WriteMetaTag(char *a_tag);   // Write/Append a meta-tag 
 int  WriteMetaRecord(char *a_record);  // Write/Append a record 
 
 int  WriteXMLMetaTag(char *a_tag);  // Write/Append a meta-tag 
 int  WriteXMLMetaRecord(char *a_record); // Write/Append a record 
  
 int  ReadMetaTag(char *a_tag); 
 int  ReadMetaRecord(char *a_record); 
 
 int  UnPackRecord(char *a_record, char *fields[]);  // UnPack the record into fields 
 int  PackRecord(char *a_record, char *fields[]);    // Pack the fields into a record 
    void DumpMetaFile(void); 
}; 

  



Table Class 
class Table 
{ 
 char       TableName[256];   
 Data_File  *dta; 
 Meta_File  *mta; 
 Index_File *idx; 
 
 int        TotalRecords;                        // Total number of records in the data file 
 int        DeletedRecords;                      // Deleted records 
 
 int        Verbose;                             // Verbose flag (ON / OFF) 
  public: 
 
 Table(char *tablename);                         // Constructor 
 ~Table();                                       // Destructor 
 
 void EraseTable(void);                          // Erase the table (Meta, Data, and Index files) 
 int  CreateTable(char *schema);                 // Create the schema for the table 
                                                           // create empty data and index files 
 
 void OpenTable(void);                           // The table has already been created, just open it. 
 void CloseTable(void); 
 
 int  Insert(char *a_record, unsigned long key);            
 int  Delete(unsigned long key);              
 int  Update(char *a_new_record, unsigned long key); 
   
 int  SearchByKey(unsigned long key); 
 int  SearchByField(char *field_name, char *value); 
 
 void Print(unsigned long key);                   // Print the record represented by the KEY. 
 void Print();                                    // Print the active records in the entire table. 
 void PrintSchema(void);                          // Format and Print the meta file 
 
 void Sort();                                     // Same as reorganize 
 void Reorganize();                               // Only keep the ACTIVE records (also sorts the data) 
 
 int    GetTotalRecords(void);                    // Get the total number of records in the data file. 
 int    GetDeletedRecords(void);                  // Get the number of deleted records in the table. 
 double GarbageRatio(void);                       // return DeletedRecords / TotalRecords 
 void   CalculateTotalAndDeletedRecords(void); 
}; 

  



 

  #  EraseTable 

Initialize (erase) the Meta, Data and Index files and start over. 

 

  #  CreateTable 

Build the meta file by asking the user for the proper information.  (See suggestions below regarding the 

creation of Insert_Field, Delete_Field, Update_Field functions.) 

 

  #  Insert a Record 

Using the ID, insert the record in both the Index as well as the Data file.  Note: In the index file this 

would be the same as random insertion. In the data file it would be the same as sequential insert.  (Note 

that this would be a good time to check your insert information against your meta data about each field!!) 

 

  #  Delete a Record 

Ask the user to provide you with the ID of the person to be deleted.  Find the record in the Index file and 

delete it by marking the flag as DELETED.  If no such record exists, provide an appropriate message to the 

user.  (Note that the record is not actually deleted from the DAT file. 

 

  #  Update a Record 

Ask the user to provide you with the ID of the person. Find the record in the Index file, display its content, 

allow the user to modify the content, insert the new record at the end of the data file and place the new 

address in the index file.  Note that this causes the old record to be left in the data file with no reference 

to it (This will be handled later in the reorganize function).  If no such record exists, provide an 

appropriate message to the user. 

 

  #  Search_BY_KEY_ID 

Ask the user to provide you with the ID of the person.  Find the record in the index file, seek to that 

location in the data file, sequentially read the rest of the record and display it.  If no such record exists, 

provide an appropriate message to the user. 

 

  #  Search_BY_FILEDNAME=VALUE 

Let the user to search for a value within a given field of your database!!.  This is were the META file 

comes into the picture.  Function specification may look something like.. 

Search(char *table_name, char *field_name, char *field_value); 

Search(ADepartment@, ADept_Name@, AComputer Science@); 

 

  #  Print (id) 

Ask the user to provide you with the ID of the person.  Find the record in the index file, if the record is 

ACTIVE seek to the appropriate location in the data file, read and print it.  If no such record exists, 

provide an appropriate message to the user. 

 

  #  Print (overloaded) 

Print the ACTIVE records in the file.  Read the index file one record at a time, check the FLAG for being 

ACTIVE, seek to the appropriate location in the data file and print the record. 

 

  #  Print Schema) 

Print the information in the meta-data file. 

 

  # Sort 

See Reorganize. 

 

  #  Reorganize 

Rewrite or regenerate both the index as well as the data file, discarding the deleted records.  Note: if 



you are using a random access file to implement your index, the reorganization will also exhibit an 

interesting side effect.  The data file will be sorted in the process of reorganization. 

 

Yet Another Hacker====s Corner: 

 

Create the following DDL functions to allow the user to create, delete and update the schema of your 

table or database.  

 

Insert_Field should allow you to insert a new field in the meta file of a give table.  Note that this 

operation will at least have two parts to it.  First you need to modify the meta file (rewrite it!!) and, then 

you need to reorganize the data file to account for the fact that a new field has been added. 

 

Delete_Field should allow the user to delete one of the fields from a given table in the meta file.  Note 

that this is also non-trivial.  You have rewrite the metafile, also you need to make sure you are not 

dealing with a Primary key. 

 

Update_Field would be Delete_Field followed by an Insert_Field 

 

 

What to hand in: 

 

     3 Cover page with proper title, your name, course # and name, assignment #, date, etc.... 

     3 Source code (documented) 

     3 Sample runs (annotated if necessary) 

 
 

For this assignment you may form a team of up to 2 individuals. 

 

 

 



 


