Landscape(T): A Robust and Low-cost Sensor Positioning System Using the Dual of Target Tracking

Novelty and Contributions

Localization from a NEW Perspective

- Treat the sensor localization problem as the **dual of target tracking**.
- A moving location-aware location assistant (LA) periodically broadcasts beacons while it moves around the sensor field. Each sensor passively observes the beacons.
- Each sensor individually "tracks" its own position using a UKF (Unscented Kalman Filter) [1] based algorithm.

Performance Evaluation

- Use MDS-MAP[3] (the state-of-the-art localization approach) as the reference.
- The result reported here is for a sensor network with irregular topology, in which sensors are deployed around a lake.

Landscape vs. MDS-MAP(P.R)

(Results for 10% range error)

Advantages

- High accuracy, good scalability.
- ZERO sensor-to-sensor communication cost, low computation cost.
- Robust to node densities, network topologies, and ranging errors.

beacon. $\mathbf{w}_i(n)$ and $\mathbf{v}_i(n)$ are noise sequences.

Unscented Kalman Filter (UKF) based algorithm:

- The UKF [1] embeds Unscented Transformation (UT) into Kalman Filter's prediction and update structure.
- The basic idea of UT is to represent the state distribution by a minimal set of carefully chosen sample points (sigma points).
- Best choice for our system: UKF is able to elegantly resolve the above nonlinear problem with higher accuracy and/or less computation cost than other KF variants or Bayesian techniques.

Landscape(T) vs. Landscape:

- In our previous work Landscape [2], beacons contain LA's locations and transmission powers only, the RSS (received signal strength) measurement is utilized.
- Landscape(T) adds a new observation equation:

Summary

	Neighborhood-measurement-based localization methods	Landscape	Landscape(T)
Accuracy	From low to high , depending on algorithms as well as node densities. A high accuracy is usually at the cost of high computation cost.	High.	Higher.
Scalability	Depends on algorithms, from low (centralized) to high (distributed).	High.	High.
Computation cost	From low to high, depending on algorithms as well as node densities.	Low.	Low.
Communication cost (sensor-to-sensor)	High to very high.	Zero.	Zero.
Robustness to densities/topologies	Weak.	Strong, independent of densities/topologies.	Strong, independent of densities/topologies.
Robustness to range errors	From weak to strong, depending on algorithms.	Strong.	Stronger.
Ranging techniques	RSS, ToA, TDoA, or AoA	RSS	RSS + TDoA

$\Delta \mathbf{t}_{i}(n) = (\mathbf{y}_{i}(n) - \mathbf{y}_{i}(n-1))/c + \mathbf{v}_{it}(n),$

where $\Delta t_i(n)$ the difference between the traveling times (from the LA) to a sensor node) of two consecutive beacons. This TDoA (time difference of arrival) based new observation is delicately designed so that no time synchronization is needed.

References

[1] S. Julier and J. Uhlmann, "Unscented Filtering and Nonlinear Estimation", Proc. of the IEEE, Vol. 92, No. 3, March 2004

[2] L. Zhang et al., "A Novel Distributed Sensor Positioning System Using the Dual of Target Tracking", online technical report, http://www.cs.iusb.edu/~liqzhang/Liqiang_Landscape.pdf (A short version published in IEEE WiMob'05). [3] Y. Shang et al., "Localization from Connectivity in Sensor Networks", IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No. 11, November 2004.